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The transient behavior of the natural convection boundary-layer flow adjacent to a vertical plate heated with
a uniform flux in a quiescent homogeneous ambient fluid with Prandtl number Pr�1 is investigated by scaling
analysis and direct numerical simulation �DNS�. The flow is characterized by a startup stage, a short transi-
tional stage and a steady state. The flow is parametrized by the thermal and velocity boundary-layer thickness
scales, the vertical velocity scale, the time scale for the boundary layer to reach the steady state and the plate
temperature scale. Scaling analysis is used to obtain laws relating these quantities to the flow governing
parameters, the Rayleigh number Ra, the Prandtl number, and the Boussinesq number Bo=RaPr which is a
much more important control parameter than Ra for small Pr fluids. A series of DNS with selected values of Ra
and Pr in the ranges of 106�Ra�1010 and 0.01�Pr�0.5 are used to validate the scaling laws and obtain
scaling constants.
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I. INTRODUCTION

The transient response of a fluid via an unsteady natural
convection flow to a suddenly imposed surface heating
condition has been extensively explored in the literatures
�see, e.g., Refs. �1–5��. The natural convection flow of fluid
with low Prandtl number �Pr�1� has also received consid-
erable attention due to its large coefficient of heat conduction
which is important to practical applications, such as in
nuclear reactors where liquid metals with Pr�1 have been
widely used for the rapid cooling purpose and its fundamen-
tal importance to fluid mechanics and heat transfer subjects
�see, e.g., Refs. �6,7��.

The analytical methods employed previously to solve the
natural convection flow of fluid with low Prandtl number
may be divided into four types. The first type obtains the
numerical solution of a set of ordinary differential equations
derived from the original governing partial differential equa-
tions via a similarity transformation �see, e.g., Refs. �8��. To
obtain the Prandtl number variation using this approach a
separate integration of the differential equations has to be
performed for each Prandtl number, and hence the results
have to be tabulated instead of being represented in a single
formula. Furthermore, as pointed out by Kuiken �9�, this ap-
proach has another disadvantage, that for low Prandtl num-
ber the equations contain coefficients of different orders of
magnitudes which greatly affects the velocity profiles and
causes numerical difficulty for very small Pr. The second
approach is to integrate the original partial differential gov-
erning equations by means of the integral method of
Kármán-Pohlhausen �see, e.g. Refs. �2,10�� which has the
advantage that it gives results which display the Prandtl
number explicitly. The disadvantage of this is its inaccuracy
and its inherent systematic errors �9�. To overcome the short-

comings but to maintain the advantages of the above-
mentioned methods, i.e., accuracy and explicit Prandtl num-
ber, Kuiken �9� developed the third approach which employs
a singular perturbation technique �11�. Additionally, this ap-
proach reveals much of the structure of a natural-convection
boundary layer at low Prandtl number, as the method of
matched asymptotic expansions employed in the approach
exposes the predominant factors in different parts of the
boundary layer. This approach has been used by many au-
thors for the natural convection flow at low Prandtl number.
For example, Park and Carey �12� combined this matched
asymptotic expansion technique with an explicit finite-
difference scheme to investigate the transient natural convec-
tion flow near a vertical surface at low Prandtl number; Joshi
�13� used the technique to explore the wall plume at extreme
Prandtl numbers and found that transport in a wall plume,
which is natural convection flow arising from a line thermal
source at the leading edge of a vertical surface, at asymptoti-
cally large and small Prandtl numbers exhibits differences
from vertical surfaces and the line plume; Merkin et al. �14�
used the technique to obtain similarity solutions for both the
free convection at low Prandtl number on a heated vertical
plate with a prescribed power-law heating and the mixed
convection at low Prandtl number on a vertical surface with
a prescribed heat flux; Ramanaiah and Malarvizhi �15� used
the approach for the natural convection adjacent to a vertical
plate with three thermal boundary conditions, i.e., the plate is
subjected to a prescribed temperature, a prescribed heat flux
or a prescribed heat transfer coefficient; Merkin et al. �16�
also extended this approach to the natural-convection
boundary-layer flow on a vertical surface with newtonian
heating in which the heat transfer from the surface is propor-
tional to the local surface temperature and to the boundary-
layer analysis of the thermal bar which is a descending plane
plume of fluid at the temperature of maximum density; Park
and Hyun �17� extended the method to the transient buoy-
ancy layer for an infinite vertical wall, where it was shown
that the character of the transient layer has a strong depen-
dence on the Prandtl number, which is in contrast to the case
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of the steady-state layer, and to the analysis of the transient
adjustment processes of an initially stationary and stably
stratified fluid in a square container with highly conducting
boundary walls; Chamkha �18� used the method to investi-
gate the laminar hydromagnetic natural convection flow
along a heated vertical surface in a stratified environment
with internal heat absorption.

The fourth approach is to obtain, via scaling analysis, the
various scaling laws describing the predominant flow behav-
ior, and to carry out direct numerical simulation �DNS� of the
original partial differential governing equations of flow to
verify and quantify the scaling laws for the specifically-
selected ranges of the flow control parameters, such as the
Prandtl number �Pr�, the Rayleigh number �Ra�, etc. This
approach was pioneered by Patterson and Imberger �19� in
the study of the transient behavior of unsteady natural con-
vection flow that occurs when the opposing two vertical side-
walls of a two-dimensional rectangular cavity are impul-
sively heated and cooled by an equal amount, and has since
become a widely used technique for natural convection
flows. For example, this method was used extensively by
Bejan �4� to investigate a series of unsteady and steady natu-
ral convection flows including forced convection boundary
layers, forced convection wakes and natural convection
boundary layers, and was strongly recommended for other
convection flows and heat transfer processes such as those in
porous media �20�; Jannot and Kunc �21� employed such an
approach to explore the onset of transition to turbulence in
natural convection with gas along a vertical isotherm plane;
Kim and Hyun �22� dealt with the convective process of a
differentially heated cavity system in response to abrupt im-
position of gravity from the quiescent null-gravity initial
state by a scaling analysis and direct numerical simulations
and obtained the scaling laws describing the small-time,
intermediate-time and steady state approaching behavior of
the flow; Lin and Armfield �23,24� employed such tech-
niques for the transient processes of cooling an initially ho-
mogeneous fluid with Pr�1 by natural convection in a ver-
tical circular cylinder and in a rectangular container; Lin,
Armfield, and Morgan �25� used the same techniques to ob-
tain the scaling laws for the boundary layer development
along a vertical isothermal plate in a linearly stratified fluid
with Pr�1; Lei and Patterson �26� extended the scaling
analysis of �19� to the unsteady natural convection in a tri-
angular enclosure induced by absorption of radiation.

Some other techniques have also been used to investigate
natural convection flow at low Prandtl numbers. For ex-
ample, experimental heat transfer correlations were deter-
mined by Humphreys and Welty �27� for natural convection
in mercury in a uniformly heated vertical channel during
unstable laminar and transitional flow; Bejan and Lage �28�
explored the Prandtl number effect on the transition in natu-
ral convection along a vertical surface; The two- and three-
dimensional numerical simulations of the transition to oscil-
latory convection in low-Prandtl-number fluids were carried
out by Henry et al. �29�; Sammouda, Belghith, and Surry �7�
used finite element simulation to investigate the transient
natural convection of low-Prandtl-number fluids in heated
cavity; A linear stability analysis was applied by Sundström
and Vynnycky �30� to a family of natural convection flows in

an arbitrarily inclined rectangular enclosure where the flow is
driven by prescribed heat or mass fluxes along two opposing
walls; The three-dimensional axisymmetry-breaking instabil-
ity of an axisymmetric convection flow associated with crys-
tal growth from bulk of melt was presented by Gelfgat, Bar-
Yoseph and Solan �31�; The low-Prandtl number natural
convection in volumetrically heated rectangular enclosures
with different aspect ratios was explored by direct numerical
two-dimensional simulation by Piazza, Ciofalo, and Arcidi-
acono �32�. Shapiro and Fedorovich �33� obtained the exact
solutions and the Prandtl number dependence of the unsteady
natural convection along a vertical plate immersed in a stably
stratified fluid induced by an impulsive �step� change in plate
temperature, a sudden application of a plate heat flux, and
arbitrary temporal variation in plate temperature or plate heat
flux by the method of Laplace transforms and a regular per-
turbation expansion, but focused on the one-dimensional
transient natural convection in regions where the leading-
edge effect has not yet propagated and for times prior to the
onset of any instabilities.

The steady-state behavior of the natural convection
boundary-layer flow of an initially quiescent homogeneous
Newtonian fluid with Pr�1 adjacent to a vertical plate
heated with a uniform flux was investigated by Sparrow and
Gregg �8�, as mentioned above and as will be detailed in Sec.
III C, who obtained a similarity solution for the temperature
and velocity distributions, requiring the numerical solution
of a set of ordinary differential equations. For small Pr fluids
they only calculated the flow behavior at Pr=0.1 due to com-
puting limitations. Scaling laws characterizing the steady-
state behavior of this small Pr fluid flow were obtained by
Bejan �4� using scaling analysis. However, they have not
been verified and quantified. Furthermore, no scaling laws
have been developed for the transient behavior of such a
flow associated with start-up, which motivates the current
work. In the current study, various scaling laws will be de-
veloped for the transient behavior of the unsteady natural
convection boundary-layer flow of an initially quiescent ho-
mogeneous Newtonian fluid with Pr�1 adjacent to a vertical
plate heated with a uniform flux by extending the work of
Patterson and Imberger �19� and Bejan �4�. The steady-state
flow behavior will also be included in the analysis and the
resulting steady-state scaling laws will be benchmarked by
the similarity solution obtained by Sparrow and Gregg �8�,
with, as will be shown in Sec. IV, good agreement. Further-
more, a series of DNS with selected values of Ra and Pr in
the ranges of 106�Ra�1010 and 0.01�Pr�0.5 will be car-
ried out to verify and quantify various scaling laws obtained
from the scaling analysis.

The remaining part of this paper is organized as follows.
The scaling analysis will be carried out in Sec. II to develop
scaling laws for the parameters characterizing the behavior at
different stages of flow development. The numerical methods
and the numerical accuracy tests will be described in Sec. III.
The scaling laws are then verified and quantified in Sec. IV
by a series of DNS results with selected values of Ra and Pr
in the ranges of 106�Ra�1010 and 0.01�Pr�0.5. The
similarity of the temperature and velocity profiles at different
stages of flow development will also be discussed in Sec. IV.
Finally, conclusions are presented in Sec. V.
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II. SCALING ANALYSIS

Under consideration is the transient behavior of unsteady
natural convection boundary-layer flow of an initially quies-
cent homogeneous Newtonian fluid with Pr�1 adjacent to a
vertical plate heated with a uniform heat flux. The plate of
length H lies at X=0, and the origin is at Y =0, where X and
Y are respectively the horizontal and vertical coordinates. It
is assumed that the plate boundary conditions are zero veloc-
ity and constant T X

0 , where T X
0 is the temperature gradient at

the plate. The ambient fluid is initially at rest and at the
temperature T0. The gravity acts in the negative Y direction.
It is further assumed that the flow is laminar and two-
dimensional.

The governing equations of motion are the Navier-Stokes
equations expressed in two-dimensional incompressible form
with the Boussinesq approximation for buoyancy, which to-
gether with the temperature transport equation are as follows,

Ut + UUX + VUY = −
1

�
PX + ��UXX + UYY� �1�

Vt + UVX + VVY = −
1

�
PY + ��VXX + VYY� + g	�T − T0�

�2�

UX + VY = 0, �3�

Tt + UTX + VTY = 
�TXX + TYY� �4�

where U and V are the velocity components in the X and Y
directions, t is the time, P is the pressure, T is the tempera-
ture, 	, 
, and � are the coefficient of thermal expansion,
thermal conductivity, and kinematic viscosity of the fluid,
respectively and g is the acceleration due to gravity.

After the initiation of the flow, a vertical boundary layer
will be developed adjacent to the plate. The boundary layer
will experience a start-up stage, followed by a short transi-
tional stage before reaching a steady state, as illustrated in
Fig. 1, where the parameters characterizing the flow behavior
at these stages, i.e., the plate temperature scale Tw, the ther-
mal boundary-layer thickness scale �T, the inner and outer
velocity boundary-layer thicknesses �vi and �vo, the vertical
velocity scale Vm within the boundary layer, and the time
scale ts for the boundary layer to reach the steady state, are
defined �it should be noted that although all these parameters
reach the steady state at the same time scale ts, numerically it
will be much easier to determine the individual time scales at
the moment when each individual parameter reaches its
maximum value, as illustrated in the figure. It is expected
that all these time scales will have the same scaling law,
although the individual constants of proportionality will be a
bit different from each other, as will be shown in Sec. IV�. A
further illustration and definition of the start-up stage and the
steady-state stage of the boundary-layer development and the
parameters describing the flow behavior at these develop-
ment stages are sketched in Fig. 2. Scaling laws will be de-
veloped in the subsequent scaling analysis for these param-
eters at both the start-up stage and the steady-state stage.

The start-up stage is dominated by conductive heat trans-
fer in the fluid adjacent to the plate, resulting in a vertical
thermal boundary layer of thickness O��T� adjacent to the
plate, where, from Eq. �4�, the balance between the thermal
inertia O��T / t� and the conduction normal to the wall
O�
�T /�T

2� gives

�T � 
1/2t1/2. �5�

The plate temperature scale Tw is then

Tw � T X
0�T � T X

0
1/2t1/2. �6�

At the same time, a velocity boundary layer also forms
within the thermal boundary layer due to the buoyancy. It is
apparent that this velocity boundary layer can be divided into
an inner region and an outer region, with the location at
which the maximum vertical velocity Vm occurs as the ap-
propriate dividing point. This dividing location, denoted as
�vi, is the thickness scale of the inner velocity boundary
layer.

FIG. 1. A definition of the three distinct stages of the boundary-
layer development and the numerically simulated typical time series
of �a� the plate temperature �w ��w= �Tw−T0� / �T x

0H��; �b� the ther-
mal boundary-layer thickness T �T=�T /H�; �c� the outer velocity
boundary-layer thickness vo �v0=�vo /H�; �d� the inner velocity
boundary-layer thickness vi �vi=�vi /H�; �e� the maximum verti-
cal velocity vm �vm=Vm /V0� within the boundary layer, respec-
tively, at the height of Y =0.5H for the specific case of Ra=108 and
Pr=0.1. � is made dimensionless by H /V0, where V0 is the charac-
teristic velocity defined by Eq. �18�.
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Within the outer velocity boundary layer, the dominant
balance in Eq. �2� is between the inertia O��V / t�, the friction
O���V /�T

2�, and the buoyancy O�g	�T� for Pr�1, where
�T=TX

0�T is the total temperature variation over the bound-
ary layer, that is,

Vm

t
�

�Vm

�T
2 � g	�T . �7�

With Eq. �5� this scaling becomes

Vm

t
� Pr

Vm

t
� g	T X

0
1/2t1/2, �8�

giving

Vm �
g	T X

0
1/2t3/2

O�1� + O�Pr�
. �9�

This scaling indicates that for small Pr fluids �Pr�1� the
contribution from the friction O���V /�T

2� is smaller than
that from the inertia O��V / t� to balance the buoyancy
O�g	�T� within the outer velocity boundary layer and it
becomes negligible when Pr→0.

On the other hand, the dominant balance in Eq. �2� within
the inner velocity boundary layer is between the inertia
O�Vm / t� and the friction O��Vm /�vi

2 �, giving

�vi � �1/2t1/2 � Pr1/2�T, �10�

which indicates that for small Pr fluids, the inner velocity
boundary layer is always within the thermal boundary layer
��vi��T�.

After the start-up stage, the dominant balance in Eq. �4�
gradually shifts from that between the thermal inertia
O��T / t� and the conduction O�
�T /�T

2� to that between the
convection O�Vm�T /Y� and the conduction, represented by a

short stage of transition, until the latter balance becomes
fully dominant and the development of the thermal boundary
layer then reaches the steady state.

At steady state, the balance between the thermal inertia
and the convection in Eq. �4� gives

�T

t
� Vm

�T

Y
, �11�

that is

Vm �
Y

t
. �12�

Using Eqs. �9� and �12�, the time scale for the thermal
boundary layer to reach the steady state is,

ts � �O�1� + O�Pr��2/5 H2


�RaPr�2/5� Y

H
�2/5

, �13�

where Ra=g	T X
0H4 /�
 is the Rayleigh number and Pr

=� /
 is the Prandtl number.
At this time, the thermal boundary layer reaches the

steady-state thickness scale �T,s, which, from Eq. �5�, is as
follows,

�T,s � �O�1� + O�Pr��1/5 H

�RaPr�1/5� Y

H
�1/5

, �14�

and the vertical velocity within the boundary layer reaches
the steady-state scale Vm,s, which, from Eq. �9�, is as follows,

Vm,s �
1

�O�1� + O�Pr��2/5


�RaPr�2/5

H
� Y

H
�3/5

. �15�

The steady-state plate temperature scale Tw,s is then ob-
tained from �T,s as

Tw,s � T X
0�T,s � �O�1� + O�Pr��1/5 T X

0H

�RaPr�1/5� Y

H
�1/5

.

�16�

The inner velocity boundary layer reaches the steady-state
thickness scale �vi which, from Eq. �10�, is as follows

�vi,s � �O�1� + O�Pr��1/5 Pr1/2H

�RaPr�1/5� Y

H
�1/5

� Pr1/2�T,s.

�17�

As illustrated in Figs. 1 and 2, when Pr�1 the outer
velocity boundary layer thickness must be as wide as the
thermal boundary layer when the boundary-layer develop-
ment reaches the steady state, and therefore the outer veloc-
ity boundary layer thickness scale �vo must be the same as
the thermal boundary-layer thickness scale �T and all the
scaling laws obtained for �T, both at the start-up stage and
the steady-state stage, must apply for �vo.

An examination of the scaling laws �13�–�17� obtained
above reveals that the new parameter group RaPr becomes a
dominant parameter characterizing the small Pr fluid flows
considered here. In fact, as pointed out by Bejan �4�, RaPr,
which is called the Boussinesq number �i.e., Bo=RaPr�,
plays the same role for small Pr fluids as Ra plays for high Pr

FIG. 2. A sketch of the start-up stage and the steady-state stage
of the boundary-layer development and the parameters describing
the flow behavior at these development stages.
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fluids and its use is more appropriate than the use of Ra in
small Pr fluid flows. In the subsequent sections, we will use
Bo instead of Ra.

From Eq. �15�, it is obvious that the following velocity
scale

V0 =

�RaPr�2/5

H
=


Bo2/5

H
, �18�

is the appropriate characteristic velocity scale for the devel-
opment of the boundary layer with Pr�1. Using V0, H,
H /V0, and T X

0H as the characteristic velocity, length, time,
and temperature for the development of the boundary layer,
the scaling laws obtained above can be made dimensionless
as follows.

During the start-up stage, the scaling laws �5�, �6�, �9�,
and �10� have the following dimensionless forms

T =
�T

H
�

�1/2

Bo1/5 , �19�

�w =
Tw

T X
0H

� T �
�1/2

Bo1/5 , �20�

vm =
Vm

V0
�

�3/2

O�1� + O�Pr�
, �21�

vi =
�vi

H
�

Pr1/2�1/2

Bo1/5 � Pr1/2T, �22�

where �= t / �H /V0� is the dimensionless time; and at the
steady state, the scaling laws �13�–�17� become dimension-
less as follows,

�s =
ts

�H/V0�
� �O�1� + O�Pr��2/5y2/5, �23�

T,s =
�T,s

H
� �O�1� + O�Pr��1/5� y

Bo
�1/5

, �24�

vm,s =
Vm,s

V0
�

y3/5

�O�1� + O�Pr��2/5 , �25�

�w,s =
Tw,s

T X
0H

� �O�1� + O�Pr��1/5� y

Bo
�1/5

, �26�

vi,s =
�vi,s

H
� Pr1/2�O�1� + O�Pr��1/5� y

Bo
�1/5

� Pr1/2T,s,

�27�

where y=Y /H is the dimensionless location on the plate.
From these scaling laws, it is seen that the development of

the boundary layer at the start-up stage is one-dimensional as
it is only � dependent and is y independent. However, it
becomes two-dimensional and y dependent at steady state. It
is apparent that this dependence change-over occurs in the
transitional stage in which the � dependence gradually di-
minishes and the dependence on y gradually increases until

at steady state the former disappears and the latter becomes
fully dominant.

From Eq. �24�, it can also be seen that the existence of a
distinct boundary layer, where convection prevails, requires
that T,s�1, which, in turn, requires Bo�1 as the maximal
value of y is one and �O�1�+O�Pr�� is a constant of the order
of one for a specific Pr value, as will be shown in Sec. IV.
When Bo�1, the boundary layer will become indistinguish-
able and conduction will dominate the flow. As all the scal-
ing laws obtained so far have been developed with the as-
sumption of a distinct convective boundary layer, these
scaling laws are therefore only valid for Bo�1. In the sub-
sequent sections, our numerical simulations will also be lim-
ited within this distinct convective boundary layer regime.

III. NUMERICAL METHODS AND ACCURACY
TEST

A. Governing equations in dimensionless form and the initial
and boundary conditions

The governing equations can be recast in non-dimensional
form as follows using V0=
Bo2/5 /H, T X

0H, H, H /V0, and
�V0

2 as the respective characteristic velocity, temperature,
length, time, and pressure scales,

u� + uux + vuy = − px +
Pr

Bo2/5 �uxx + uyy� , �28�

v� + uvx + vvy = − py +
Pr

Bo2/5 �vxx + vyy� + Bo1/5� , �29�

ux + vy = 0, �30�

�� + u�x + v�y =
1

Bo2/5 ��xx + �yy� . �31�

To minimize the effect of the boundaries in the direct
numerical simulations, the computational domain shown in
Fig. 3 is used in the simulations, where an extra region with
a dimensionless height of 0.5 and a dimensionless width of

FIG. 3. The computational domain and the initial and boundary
conditions for the direct numerical simulations.
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2.0 has been added to both the top and the bottom and the
following initial and boundary conditions have been used in
the simulations,

u = v = 0,� = 0 at all x,y when � � 0;

and

u = v = 0,�x = 0 at x = 0,− 0.5 � y � 0;

u = v = 0,�x = 1 at x = 0,0 � y � 1.5;

ux = vx = �x = 0 at x = 2,− 0.5 � y � 1.5;

u = v = 0,�y = 0 at 0 � x � 2,y = − 0.5;

uy = vy = �y = 0 at 0 � x � 2,y = 1.5 when � � 0.

B. Numerical algorithm

The governing equations are discretized on a nonstag-
gered mesh using finite volumes, with standard second-order
central difference schemes used for the viscous, pressure gra-
dient and divergence terms. The QUICK third-order upwind
scheme is used for the advective terms �34�. The second-
order Adams-Bashforth scheme and Crank-Nicolson scheme
are used for the time integration of the advective terms and
the diffusive terms, respectively. To enforce the continuity,
the pressure correction method is used to construct a Pois-
son’s equation which is solved using the preconditioned
GMRES method. Detailed descriptions of these schemes
were given in Ref. �35� and the code has been widely used
for the simulation of a range of buoyancy dominated flows,
including the travelling waves in natural convection in a cav-
ity �36�, the vortex generation and shedding from a circular
cylinder in oscillatory plus mean flow �37�, the internal
wave-wave interaction in a stratified fluid �38�, founain flows
�39�, propagating turbulent premixed flames �40�, etc.

To ensure that a suitable resolution is maintained in the
numerical simulations, a nonuniform computational mesh
has been used which concentrates points in the boundary
layer and near the boundaries and is relatively coarse in the
interior. Specifically, the mesh is constructed using a
stretched grid, with nodes concentrated in the region of x
=0 and y=0 of the computational domain shown in Fig. 3.
The nearest grid point is located 0.0001 from the domain
boundaries in the x-direction and 0.0005 from y=0 in the
y-direction. Subsequently, the mesh expands at a fixed rate of
3.6% in the x-direction and 2.0% in the y-direction up to
x=y=0.1. After that, the mesh size expansion rate decreases
at a rate of 10% until it reaches zero, resulting in 284
�290 grid points with a constant coarser mesh in the interior
of the domain. The time-step used in the simulations is
5�10−5. An extensive mesh and time-step dependency
analysis has been carried out to ensure that the solutions are
grid-free and accurate. More detailed information about the
numerical algorithm can be found in Ref. �23�.

C. Numerical accuracy test

Sparrow and Gregg �8� gave the following similarity so-
lution for �w,s, which is the plate temperature scale at the
steady-state stage of its development,

�w,s = − 51/5Pr2/5F��Pr�� y

Bo
�1/5

, �32�

where F��Pr� is a function of Pr and its value can be obtained
by simultaneously solving two ordinary differential equa-
tions �the Eqs. �3a� and �3b� subject to the boundary condi-
tions Eq. �11� in Ref. �8��. For Pr=0.1, Sparrow and Gregg
�8� found that F��Pr�=−2.7507, which gives the following
solution for Pr=0.1,

�w,s = 1.511� y

Bo
�1/5

. �33�

It is worthwhile to note that the approximate solution ob-
tained by the von Kármán–Pohlhausen method �8� is

�w,s =
�360�1/5

2
�0.8 + Pr�1/5� y

Bo
�1/5

= 1.589� y

Bo
�1/5

,

�34�

for Pr=0.1, which shows an error of 5.16% from the simi-
larity solution given by Eq. �33�, and the solution obtained
by the perturbation method �14� is

�w,s = �1.31411 + 0.257Pr1/2�� y

Bo
�1/5

= 1.395� y

Bo
�1/5

,

�35�

for Pr=0.1, which shows an error of −7.68% from the simi-
larity solution given by Eq. �33�.

The DNS results for �w / �y /Bo�1/5 and their errors from
the similarity solution given by Eq. �33� are listed in Table I
for different Bo and y in the range of 105�Bo�109 with
Pr=0.1. It is found that when Bo�107 and y�0.3 the DNS
results are in good agreement with the similarity solutions,
with errors of within ±1.00% �notably it is observed that for
Bo=109 and y=0.5, the DNS result exactly matches the
similarity solution�. The larger errors observed for Bo�107

TABLE I. DNS results of �w�y /Bo�−1/5 and their errors from the
similarity value of �w�y /Bo�−1/5=1.511 for different Bo and y in the
range of 105�Bo�109 with Pr=0.1.

Bo y �w�y /Bo�−1/5 Error

105 0.5 1.478 −2.18%

106 0.5 1.492 −1.26%

107 0.5 1.503 −0.53%

108 0.5 1.508 −0.20%

109 0.5 1.511 0.00%

107 0.1 1.469 −2.78%

107 0.3 1.499 −0.79%

107 0.7 1.507 −0.26%

107 0.9 1.510 −0.07%
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are mainly due to the deviation from the boundary layer
assumption made in Ref. �8� which requires Bo�1 to ensure
T�1. If Bo is taken as the local Boussinesq number, based
on plate location y, it is also seen that for small y the simi-
larity solution is expected to be less accurate.

IV. DNS RESULTS

In this section, the scaling laws obtained above will be
verified and quantified by a series of DNS with selected val-
ues of Bo and Pr in the range of 106�Bo/Pr�1010 and
0.01�Pr�0.5. A total of 8 DNS runs have been carried out
for this purpose, that is, runs 1–5 with Bo=105, 106, 107, 108,
and 109 while keeping Pr=0.1 unchanged have been carried
out to show the dependence of the scaling laws on Bo and
runs 6–7, 3 and 8 with Pr=0.01, 0.05, 0.1, and 0.5 while
keeping Bo/Pr=108 unchanged have been carried out to
show the dependence of the scaling laws on Pr.

Figure 4 contains the numerically obtained temperature
and stream function contours at steady state for Bo=107 and
Pr=0.1. The stream function contours show the basic struc-
ture of the flow, with the boundary layer formed adjacent to
the heated part of the plate �y�0�, entraining fluid through
the far-field open boundaries and discharging it through the
downstream boundary at large y. The temperature contours
clearly show the heated region of the x=0 boundary, corre-
sponding to the heated plate, and show the increase in width
and intensity of the boundary layer with increasing y.

A. Verification and quantification of scaling laws

1. Scaling laws for �w, �w,s, and �w,s

The scaling laws obtained in the above scaling analysis
for �w, the plate temperature scale at the start-up stage, and
�w,s, the plate temperature scale at the steady-state stage, are
Eq. �20� and Eq. �26� respectively, and that for �w,s, the time
scale for the development of the plate temperature to reach
the steady state, is Eq. �23�.

Figure 5 presents the DNS results of the time series
of �w with variations of y, Bo, and Pr in the ranges of
106�Bo/Pr�1010 and 0.01�Pr�0.5, where �w and � are
scaled by �y /Bo�1/5 and y2/5, respectively. Figure 5�a� con-
tains the DNS results of the time series of �w with the y
variation at Bo=107 and Pr=0.1 �run 1�, showing that at the
start-up stage all five sets of data with different y fall onto
the same straight line described by �w=1.128�1/2 /Bo1/5,
which clearly demonstrates that �w has no dependence on y,
meaning that the development of the wall temperature at this
stage is one-dimensional, which is in agreement with the
scaling law �20�. At the steady-state stage, however, it is
observed that the y1/5 scaling brings all five sets of data with
different y to fall onto approximately the same horizontal

FIG. 4. Numerically obtained typical temperature contours
�a� and stream function contours �b� at steady state ��=10� for
Bo=107 and Pr=0.1.

FIG. 5. DNS results for �w / �y /Bo�1/5 plotted against �� /y2/5�1/2

with �a� the y variation at Bo=107 and Pr=0.1; �b� the Bo variation
at y=0.9 and Pr=0.1; and �c� the Pr variation at Bo/Pr=108 and
y=0.9. —— �bold�, quantified scaling law �w=1.128�1/2 /Bo1/5; ¯
¯ �bold�, quantified scaling law �w,s=2.339y2/5; – – – �bold�, quan-
tified scaling law �w=1.5105�y /Bo�1/5.
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line described by �w,s=1.5105�y /Bo�1/5, indicating that not
only �w,s is y dependent and becomes two-dimensional but
also the y1/5 scaling is the correct y dependence of �w,s,
which agrees with the scaling law �26�. When y decreases, it
is observed that deviations from the scaling law will in-
crease. �The DNS results show that the deviations of �w,s
estimated by the scaling law �26� at y=0.1, 0.3, 0.5, and 0.7
are respectively, −2.70%, −0.68%, −0.45%, and −0.15%
from that at y=0.9.� Furthermore, DNS results �not shown in
the figure� also show that if y→0 a significant deviation will
be observed. The reason for this deviation is obvious, as
when y approaches the leading edge �y=0� the boundary
layer assumption made in the above scaling analysis will not
hold anymore, as discussed in Sec. III C. The DNS results in
the figure also show that the y2/5 scaling is the correct y
dependence of �w,s, which confirms the scaling law �23�.

Figure 5�b� contains the time series of �w with the
Bo variation at y=0.9 and Pr=0.1 �runs 1–5�, showing
that the Bo−1/5 scaling brings all five sets of data with differ-
ent Bo to fall onto the same straight line described again by
�w=1.128�1/2 /Bo1/5 at the start-up stage and onto the same
horizontal line described by �w,s=1.5105�y /Bo�1/5 at steady
state respectively, indicating that the Bo−1/5 scaling is the
correct Bo dependence of �w and �w,s, which confirms the
scaling laws �20� and �26�. The DNS results in the figure also
show that �w,s has no dependence on Bo, which is in agree-
ment with the scaling law �23�.

Figure 5�c� contains the time series of �w with the Pr
variation at y=0.9 and Bo/Pr=108 �runs 6, 7, 3 and 8�,
clearly showing that �w,s has a further Pr dependence in ad-
dition to the Pr−1/5 scaling �the DNS results show that
�w,s / �y /Bo�1/5 is 1.3725, 1.4537, 1.5105, and 1.7291 when
Pr is 0.01, 0.05, 0.1, and 0.5, respectively�, which is ac-
counted for by the term f��Pr�1/5= �O�1�+O�Pr��1/5 in the
scaling law �26�. It is also seen that �w,s is Pr dependent as
the DNS results show that �w,s /y2/5 is 1.8930, 2.0940,
2.2425, and 2.8170 when Pr is 0.01, 0.05, 0.1, and 0.5, re-
spectively, which is also accounted for by the term
f�,��Pr�2/5= �O�1�+O�Pr��2/5 in the scaling law �23�.

The specific dependences of f��Pr� and f�,��Pr� on Pr can
be determined with the DNS results, as shown in Fig. 6
where the DNS results of f��Pr� and f�,��Pr� are plotted
against Pr for the Pr variation at Bo/Pr=108 and y=0.9,
giving,

f��Pr� = 5.2719 + 20.591Pr, �36�

f�,��Pr� = 5.9671 + 17.917Pr, �37�

which indicate that the contribution from O�Pr� in f��Pr� or
f�,��Pr� is not negligible with respect to that from O�1� and it
increases with Pr. It is found that f��Pr� and f�,��Pr� esti-
mated by Eqs. �36� and �37� are within ±2.38% and ±4.71%,
respectively, from their individual DNS results when Pr is in
the range of 0.01 to 0.5. Hence, the scaling laws �23� and
�26� are quantified as follows for 106�Bo/Pr�1010 and
0.01�Pr�0.5,

�w,s = �5.2719 + 20.591Pr�1/5� y

Bo
�1/5

, �38�

�w,s = �5.9671 + 17.917Pr�2/5y2/5. �39�

It is therefore expected that the quantified scaling laws
�38� and �39� will bring together all four sets of data with
different Pr presented in Fig. 5�c�. This is confirmed by the
results shown in Fig. 7, where it is observed that all four sets
of data with different Pr fall onto the same horizontal line
described by Eq. �38� at steady state, all the time scales for
different Pr have approximately the same value described by
Eq. �39�, and all four sets of data fall onto the same line
described by the following equation at the start-up stage,

FIG. 6. DNS results for �a� f��Pr� and �b� f�,��Pr� plotted against
Pr for the Pr variation at Bo/Pr=108 and y=0.9.

FIG. 7. DNS results for �w /�w,s plotted against �� /�m,s�1/2 with
the Pr variation at Bo/Pr=108 and y=0.9. —— �bold�, quantified
scaling law �w=1.1492�1/2 /Bo1/5; ¯ ¯ �bold�, quantified scaling
law �w,s= f�,��Pr�2/5y2/5; – – – �bold�, quantified scaling law
�w,s= f��Pr�1/5�y /Bo�1/5.
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�w = 1.1617�f��Pr�/f�,��Pr��1/5�1/2/Bo1/5. �40�

Nevertheless, the DNS results show that �f��Pr� / f�,��Pr��1/5

varies from 0.97673 to 1.0087 with an average of 0.9892 �a
change of within ±2%� when Pr changes from 0.01 to 0.5,
indicating that this ratio is almost a constant in this Pr range
and therefore at the start-up stage, �w can be approximated
by

�w = 1.1492�1/2/Bo1/5. �41�

As stated in Sec. III C, the similarity solution of Sparrow
and Gregg �8�, as shown by Eq. �32�, includes such a further
Pr dependence, that is,

�w,s

�y/Bo�1/5 = − 51/5Pr2/5F��Pr� , �42�

although only the value of F��Pr�=−2.7507 was obtained for
Pr=0.1. Such further Pr dependencies were also predicted by
the approximate solutions such as those obtained by the von
Kármán-Pohlhausen method �8� and by the perturbation
method �14� as shown by Eqs. �34� and �35�, that is

�w,s

�y/Bo�1/5 =
�360�1/5

2
�0.8 + Pr�1/5, �43�

and

�w,s

�y/Bo�1/5 = 1.31411 + 0.257Pr1/2. �44�

However, it is found that the predictions with these approxi-
mate solutions deviate considerably from the DNS results,
as shown in Fig. 8 for the Pr variation at Bo/Pr=108 and
y=0.9. It is further found that the approximate solution ob-
tained by the von Kármán–Pohlhausen method becomes
more accurate when Pr→1, while, on the other hand, that
obtained by the perturbation method becomes more accurate
when Pr→0, reflecting respectively their individual
asymptotic behaviors.

2. Scaling laws for vm, vm,s, and �m,s

The scaling laws obtained from the scaling analysis for
vm, the maximum vertical velocity scale at the startup stage,

and vm,s, the maximum vertical velocity scale at steady state,
are Eq. �21� and Eq. �25�, respectively, and that for �m,s, the
time scale for the development of the vertical velocity within
the boundary layer to reach the steady state, is still Eq. �23�.

Figure 9 presents the DNS results of the time series of vm
with variations of y, Bo, and Pr in the ranges of
106�Bo/Pr�1010 and 0.01�Pr�0.5, where vm and � are
scaled by y3/5 and y2/5, respectively. Figure 9�a� contains the
time series of vm with the y variation at Bo=107 and
Pr=0.1, showing that at the start-up stage all five sets of data
with different y fall onto the same straight line described by
vm=0.348�3/2, which clearly demonstrates that vm has no de-
pendence on y and therefore is one-dimensional, agreeing
with the scaling law �21�. At steady state, it is observed that
the y3/5 scaling brings all five sets of data with different y to
fall onto approximately the same horizontal line described by
vm,s=1.0172y3/5, indicating that not only vm,s is y dependent
and therefore two-dimensional but also the y3/5 scaling is the
correct y dependence of vm,s, which agrees with the scaling
law �25�, although deviations from the scaling law are ob-
served at small y �the DNS results show that the deviations
of vm,s estimated by the scaling law �25� at y=0.1, 0.3, 0.5,
and 0.7 are 5.60%, 1.52%, 0.02%, and −0.01%, respectively,
from that at y=0.9�, due to the same reason as discussed

FIG. 8. DNS results and approximate solutions of �w,s�y /Bo�−1/5

plotted against Pr for the Pr variation at Bo/Pr=108 and y=0.9.

FIG. 9. DNS results for vm /y3/5 plotted against �� /y2/5�3/2 with
�a� the y variation at Bo=107 and Pr=0.1; �b� the Bo variation at
y=0.9 and Pr=0.1; and �c� the Pr variation at Bo/Pr=108 and
y=0.9. —— �bold�, quantified scaling law vm=0.348�3/2; ¯ ¯

�bold�, quantified scaling law �m,s=2.477y2/5; – – – �bold�, quanti-
fied scaling law vm,s=1.0172y3/5.
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above for the �w,s case. The DNS results also show that the
y2/5 scaling is the correct y dependence of �m,s, which con-
firms the scaling law �23�, although, similar to vm,s, devia-
tions from the scaling law �23� are also observed at small y.

Figure 9�b� contains the time series of vm with the Bo
variation at y=0.9 and Pr=0.1, showing that both vm and vm,s
have no Bo dependence for a fixed Pr as all five sets of data
with different Bo when Pr=0.1 fall onto the same straight
line described by vm=0.348�3/2 at the start-up stage and onto
the same horizontal line described by vm,s=1.0172y3/5 at
steady state respectively, which agrees with the scaling laws
�21� and �25�. The DNS results in the figure also show that
�m,s has no dependence on Bo when Pr is fixed, which is in
agreement with the scaling law �23�, although deviation be-
tween the DNS results and the scaling law �23� can be ob-
served when Bo decreases while Pr is fixed.

Figure 9�c� contains the time series of vm with the Pr
variation at y=0.9 and Bo/Pr=108, clearly showing that vm,
vm,s, and �m,s are Pr dependent, as predicted by the
terms fv��Pr�=O�1�+O�Pr�, fv�Pr�2/5= �O�1�+O�Pr��2/5, and
f�,v�Pr�2/5= �O�1�+O�Pr��2/5, respectively, presented in the
scaling laws �21�, �23�, and �25�.

The specific dependences of fv�Pr� and f�,v�Pr� on Pr can
be determined with the DNS results, as shown in Fig. 10
where the DNS results of fv�Pr� and f�,v�Pr� are plotted
against Pr for the Pr variation at Bo/Pr=108 and y=0.9,
giving,

fv�Pr� = 0.6491 + 3.0336Pr, �45�

f�,v�Pr� = 7.402 + 16.594Pr, �46�

which, similar to the above �w case, also show that the con-
tribution from O�Pr� in fv�Pr� or f�,v�Pr� is not negligible

with respect to that from O�1� and it increases with Pr. It is
found that fv�Pr� and f�,v�Pr� estimated by Eqs. �45� and �46�
are within ±6.32% and ±3.82%, respectively, from their in-
dividual DNS results when Pr is in the range of 0.01 to 0.5.
Hence, the scaling laws �23� and �25� are quantified as fol-
lows for 106�Bo/Pr�1010 and 0.01�Pr�0.5,

vm,s =
y3/5

�0.6491 + 3.0336Pr�2/5 , �47�

�m,s = �7.402 + 16.594Pr�2/5y2/5. �48�

It is therefore expected that the quantified scaling laws
�47� and �48� will bring together all four sets of data with
different Pr presented in Fig. 9�c�. This is confirmed by the
results shown in Fig. 11, where it is observed that all four
sets of data with different Pr fall onto the same horizontal
line described by Eq. �47� at steady state, all the time scales
for different Pr have approximately the same value described
by Eq. �48�, and all four sets of data fall onto the same line
described by the following equation at the start-up stage,

vm = 1.4232
�3/2

fv�Pr�2/5f�,v�Pr�3/5 . �49�

Nevertheless, the DNS results show that fv��Pr�
= fv�Pr�2/5f�,v�Pr�3/5 can be approximated by the following
equation for Pr in the range of 0.01�Pr�0.5,

fv��Pr� = 2.8071 + 8.6105Pr, �50�

which is in agreement with the scaling law �21�.
The dependence of vm,s on Pr was also predicted by the

similarity solution obtained by Sparrow and Gregg �8� who
showed that at steady state the horizontal profile of the ver-
tical velocity within the boundary layer is described by

v�x,y� = 53/5Pr1/5F�x,Pr�y3/5, �51�

where F�x ,Pr� is a function of x and Pr which can be ob-
tained by simultaneously solving two ordinary differential
equations �the Eqs. �3a� and �3b� subject to the boundary
conditions �11� in Ref. �8��.

FIG. 10. DNS results for �a� fv�Pr� and �b� f�,v�Pr� plotted
against Pr for the Pr variation at Bo/Pr=108 and y=0.9.

FIG. 11. DNS results for vm /vm,s plotted against �� /�m,s�3/2 for
the Pr variation at Bo/Pr=108 and y=0.9. —— �bold�, quantified
scaling law vm=1.4232�3/2 / fv��Pr�; ¯ ¯ �bold�, quantified scaling
law �m,s= f�,v�Pr�2/5y2/5; – – – �bold�, quantified scaling law
vm,s=y3/5 / fv�Pr�2/5.

W. LIN AND S. W. ARMFIELD PHYSICAL REVIEW E 72, 066309 �2005�

066309-10



3. Scaling laws for �T, �T,s, and �T,s

The scaling laws obtained in the above scaling analysis
for T, the thermal boundary-layer thickness scale at the
start-up stage, and T,s, the thermal boundary-layer thickness
scale at steady state, are Eq. �19� and Eq. �24�, respectively,
and that for �T,s, the time scale for the development of the
thermal boundary-layer to reach the steady state, is again Eq.
�23�.

Figure 12 presents the DNS results of the time series of T
with variations of y, Bo, and Pr in the ranges of 106

�Bo/Pr�1010 and 0.01�Pr�0.5, where T and � are
scaled by �y /Bo�1/5 and y2/5, respectively. Figure 12�a� con-
tains the time series of T with the y variation at Bo=107 and
Pr=0.1, showing that at the start-up stage all five sets of data
with different y fall onto the same straight line described by
T=2.339�1/2 /Bo1/5, which clearly demonstrates that T has
no dependence on y and is one-dimensional, agreeing with
the scaling law �19�. At steady state, it is found that the y1/5

scaling brings all five sets of data with different y to fall onto
approximately the same horizontal line described by
T,s=3.1516�y /Bo�1/5, indicating that not only T,s is y de-
pendent and two-dimensional but also the y1/5 scaling is the
correct y dependence of T,s, which agrees with the scaling

law �24�. When y decreases, it is observed that deviation
from the scaling law increases �the DNS results show that the
deviations of T,s estimated by the scaling law �24� at
y=0.1, 0.3, 0.5, and 0.7 are respectively, 6.50%, 3.21%,
1.87%, and 1.11% from that at y=0.9�. The reason for this
increasing deviation with decreasing y is the same as for the
�w case as discussed above.

Figure 12�b� contains the time series of T with the Bo
variation at y=0.9 and Pr=0.1, showing that the Bo−1/5

scaling brings all five sets of data with different Bo/Pr
to fall onto the same straight line described again by
T=2.339�1/2 /Bo1/5 at the start-up stage and onto the same
horizontal line described by T,s=3.1516�y / �Bo�1/5 at steady
state respectively, indicating that the Bo−1/5 scaling is the
correct Bo dependence of T and T,s, which confirms the
scaling laws �19� and �24�, although for Bo=105 a relatively
large deviation is observed �the DNS results show that the
deviations of T,s estimated by the scaling law �24� at
Bo=105, 106, 107, and 108 are 3.77%, 0.56%, 0.71% and
0.55%, respectively, from that at Bo=109�. Further DNS re-
sults �not shown in the figure� show that for Bo smaller than
105 such a deviation will become significant. This is due to
the fact that when Bo decreases, as stated in Sec. III C, the
deviation from the boundary layer assumption made in the
scaling analysis, which requires that Bo�1 to ensure
T�1, will increase rapidly.

Similar observations can also be obtained from Fig. 12�c�
with the Pr variation where the DNS results at y=0.9 and
Bo/Pr=108 are presented for Pr=0.01, 0.05, 0.1, and 0.5.
However, the DNS results show that fT�Pr�=O�1�+O�Pr� in
the scaling law �24� is approximately constant for the four Pr
values �fT�Pr�1/5=3.1486, 3.1476, 3.1516, and 3.1810 for
Pr=0.01, 0.05, 0.1, and 0.5, respectively, with an average of
3.1572�. Hence, the contribution from O�Pr� in fT�Pr� is neg-
ligible with respect to that from O�1�, unlike the �w and vm

cases as discussed above. Similarly, it is also found that
f�,T�Pr�=O�1�+O�Pr� in the scaling law �23� is approxi-
mately constant for the four Pr values �f�,T�Pr�2/5=2.7599,
2.4751, 2.3969, and 2.6973 for Pr=0.01, 0.05, 0.1, and 0.5,
respectively, with an average of 2.5823�. Hence, the scaling
laws �23� and �24� are respectively quantified by

T,s = 3.1572� y

Bo
�1/5

, �52�

�T,s = 2.5823y2/5, �53�

for 106�Bo/Pr�1010 and 0.01�Pr�0.5.

4. Scaling laws for �vi, �vi,s, and �vi,s

As shown in the above scaling analysis, the scaling laws
for vi, vi,s, and �vi,s, which are respectively the inner veloc-
ity boundary-layer thickness scales at the start-up stage and
at steady state, and the time scale for the inner velocity
boundary-layer development to reach the steady state, are
Eqs. �22�, �23�, and �27�.

Figure 13 presents the DNS results of the time series
of vi with variations of y, Bo, and Pr in the ranges of
106�Bo/Pr�1010 and 0.01�Pr�0.5, where vi and � are

FIG. 12. DNS results for T�y /Bo�−1/5 plotted against �� /y2/5�1/2

with �a� the y variation at Bo=107 and Pr=0.1; �b� the Bo variation
at y=0.9 and Pr=0.1; and �c� the Pr variation at Bo/Pr=108 and
y=0.9. —— �bold�, quantified scaling law T=2.339�1/2 /Bo1/5; ¯
¯ �bold�, quantified scaling law �T,s=2.5823y2/5; – – – �bold�,
quantified scaling law T,s=3.1572�y /Bo�1/5.
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scaled by Pr1/2�y /Bo�1/5 and y2/5, respectively. Figure 13�a�
contains the time series of vi with the y variation at Bo
=107 and Pr=0.1, showing that at the start-up stage all five
sets of data with different y fall onto the same straight line
described by vi=0.835�1/2Pr1/2 /Bo1/5, which clearly con-
firms that the scaling law �22� is y independent. However,
the scaling analysis shows that at steady state the scaling law
�27� becomes y dependent, which is confirmed by the DNS
results, as shown in the figure, as all five sets of data with
different y fall approximately onto the same horizontal line
described by vi,s=1.549Pr1/2�y /Bo�1/5, although large devia-
tions from the scaling law are observed at small y �the DNS
results show that the deviations of vi,s estimated by the scal-
ing law �27� at y=0.1, 0.3, 0.5, and 0.7 are 11.73%, 3.62%,
2.69%, and 0.51%, respectively, from that at y=0.9� for the
same reason as discussed above. The DNS results in the
figure also show that the y2/5 scaling is the correct y depen-
dence of �vi,s, which confirms the scaling law �23�.

Figure 13�b� contains the time series of vi with the Bo
variation at y=0.9 and Pr=0.1, showing that the Bo−1/5 scal-
ing brings all five sets of data with different Bo to fall onto
the same straight line described again by vi
=0.835�1/2Pr1/2 /Bo1/5 at the start-up stage and onto the same

horizontal line described by vi,s=1.549Pr1/2�y /Bo�1/5 re-
spectively, indicating that the Bo−1/5 scaling is the correct Bo
dependence of vi and vi,s, which confirms the scaling laws
�22� and �27�. The DNS results in the figure also show that
�vi,s has no dependence on Bo, which is in agreement with
the scaling law �23�.

Figure 13�c� contains the time series of vi with
the Pr variation at y=0.9 and Bo/Pr=108, clearly showing
that vi,s has a further Pr dependence in addition to the
Pr1/2 /Bo1/5 scaling, which is accounted for by the term
�O�1�+O�Pr��1/5, and �vi,s is also Pr dependent, which is ac-
counted for by the term �O�1�+O�Pr��2/5, agreeing with the
scaling laws �23� and �27�.

The scaling analysis indicates that vi,s=CPr1/2T,s, as
shown by the scaling law �27�, where C is a constant of
proportionality. However, the DNS results show that C
=0.6328, 0.5225, 0.4863, and 0.3863 for Pr=0.01, 0.05, 0.1,
and 0.5, respectively, which clearly shows that C is not a
constant but monotonically decreases with Pr. In the scaling
analysis, the scaling law �27� was obtained assuming a domi-
nant inertia-friction balance in the inner velocity boundary
layer. It has then been assumed that the thickness of the inner
velocity boundary layer is characterized by the distance from
the boundary to the position where the vertical velocity is
maximum. The results shown here clearly demonstrate that
this is not the appropriate length scale, and it is at present
unclear how such a length scale should be obtained from the
DNS. Nevertheless, for completeness, we will develop an
empirical scaling for this velocity length scale, as follows.

The DNS results, as shown in Fig. 14�a�, give the follow-
ing empirical expression for C�Pr�,

FIG. 13. DNS results for vi / �Pr1/2�y /Bo�1/5� plotted against
�� /y2/5�1/2 with �a� the y variation at Bo=107 and Pr=0.1; �b� the
Bo variation at y=0.9 and Pr=0.1; and �c� the Pr variation at
Bo/Pr=108 and y=0.9. —— �bold�, quantified scaling law vi

=0.835Pr1/2�1/2 /Bo1/5; ¯ ¯ �bold�, quantified scaling law �vi,s

=2.152y2/5; – – – �bold�, quantified scaling law vi,s

=1.549Pr1/2�y /Bo�1/5.

FIG. 14. DNS results for �a� C�Pr� plotted against Pr−1/8 and �b�
f�,vi�Pr� plotted against Pr for the Pr variation at Bo/Pr=108 and
y=0.9.
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C�Pr� = 0.3558Pr−1/8, �54�

which is found to be within ±2.42% from the DNS results for
Pr in the range of 0.01 to 0.5. However, the DNS results
show that f�,vi�Pr�=O�1�+O�Pr� in the scaling law �23� for
�vi,s has the following quantified form, as shown in Fig.
14�b�,

f�,v�Pr� = 7.402 + 16.594Pr, �55�

which, similar to the above �w and vm cases, also show that
the contribution from O�Pr� in f�,vi�Pr� is not negligible with
respect to that from O�1� and it increases with Pr. It is found
that f�,v�Pr� estimated by Eq. �55� is within ±5.50% from the
DNS results when Pr is in the range of 0.01 to 0.5. Hence,
the scaling law �27� has the following quantified expression
for 106�Bo/Pr�1010 and 0.01�Pr�0.5

vi,s = C�Pr�Pr1/2T,s = 1.1233Pr3/8� y

Bo
�1/5

, �56�

and the scaling law �23� for �vi,s has the following form,

�vi,s = �4.691 + 13.023Pr�2/5y2/5. �57�

It is therefore expected that the modified scaling laws �56�
and �57� will bring together all four sets of data with differ-
ent Pr presented in Fig. 13�c�. This is confirmed by the re-
sults shown in Fig. 15, where it is observed that all four sets
of scaled data with different Pr to fall onto the same horizon-
tal line described by Eq. �56� at steady state and the same
straight line described by

vi = 0.9185
Pr3/8�1/2

f�,vi�Pr�2/5Bo1/5 , �58�

at the start-up stage.

5. Scaling laws for �vo

At steady state for Pr�1 it is expected that the outer
velocity boundary layer thickness, vo,s, will match the ther-
mal boundary layer thickness, T,s. During development it is

expected that the outer velocity boundary layer thickness vo

will lie between that of the inner velocity boundary layer, vi,
and the thermal boundary layer thickness T. The outer ve-
locity boundary layer thickness at steady state is therefore
expected to obey the same scaling laws as the steady-state
thermal boundary layer thickness. Time series for vo /T are
shown in Fig. 16 for the variations of y, Bo, and Pr in the
ranges of 106�Bo/Pr�1010 and 0.01�Pr�0.5. It is seen
that at full development the small y and small Bo/Pr results
show that vo /T is considerably greater than 1.0, indicating
that the scaling is not correct for these values, which as noted
above is expected as the scaling will not hold in the non-
similar region of the flow. The Pr variation results are pre-
sented for y=0.5 and Bo/Pr=108, values for which similarity
is expected to hold. In this case the scaling predicts that
vo /T�1.0 is independent of Pr. This is seen to be true for
all except the largest Prandtl number, Pr=0.5. The scaling is
expected to break done in the region of Pr=1.0, as it is
known that for Pr�1.0, the ratio vo /T is Pr dependent. The
unsteady variation of vo /T prior to full development shows
a complex structure with vo /T dependent on Pr, however it
is seen that for all except Pr=0.5 vo /T�1.0 during the
flow development stage.

FIG. 15. DNS results for vi /vi,s plotted against �� /�vi,s�1/2 with
the Pr variation at Bo/Pr=108 and y=0.9. —— �bold�, quantified
scaling law vi=0.9185Pr3/8�1/2f�,vi�Pr�−2/5Bo−1/5; ¯ ¯ �bold�,
quantified scaling law �w,s= f�,vi�Pr�2/5y2/5; – – – �bold�, quantified
scaling law vi,s=1.1233Pr3/8�y /Bo�1/5.

FIG. 16. DNS results for vo /T with �a� the y variation at Bo
=107 and Pr=0.1 �——, y=0.1; ¯ ¯, y=0.3; ——, y=0.5; –·–,
y=0.7; –·–, y=0.9�; �b� the Bo variation at y=0.5 and Pr=0.1
�——, Bo=105; ¯ ¯, Bo=106; ——, Bo=107; –·–, Bo=108; –··–,
Bo=109�; and �c� the Pr variation at y=0.5 and Bo/Pr=108 �——,
Pr=0.01; ¯ ¯, Pr=0.05; ——, Pr=0.1; –·–, Pr=0.5�.
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B. Similarity of temperature and vertical velocity profiles

1. Similarity of temperature profiles

Figure 17 contains the numerically simulated horizontal
temperature profiles within the thermal boundary layer at the
steady state for the selected values of Bo, Pr, and y. The
numerical results presented in Fig. 17�b�, where � and x are
scaled by �w,s and T,s respectively, show that the scales �w,s
and T,s collapse all sets of data onto a single curve, indicat-
ing that the temperature similarity is well preserved within
the thermal boundary layer at the steady state, that is, the
horizontal temperature profile within the thermal boundary
layer at the steady state can be expressed as follows

�

�w,s
= f� x

T,s
� , �59�

where f�x /T,s� represents some function of x /T,s.
Figure 18 contains the numerically simulated horizontal

temperature profiles within the thermal boundary layer at the
start-up stage for the selected values of Bo, Pr, y, and �. The
numerical results presented in Fig. 18�b�, where � and x are
scaled by �w and T, respectively, show that the scales �w and
T collapse all sets of data onto a single curve, indicating that
the temperature similarity is also well preserved within the

thermal boundary layer at the start-up stage, that is, the hori-
zontal temperature profile within the thermal boundary layer
at the start-up stage can be expressed as follows

�

�w
= f� x

T
� , �60�

where f�x /T� represents some function of x /T.

2. Similarity of vertical velocity profiles

Figure 19 contains the numerically simulated horizontal
vertical velocity profiles within the viscous boundary layer at
the steady state for the selected values of Bo, Pr, and y. The
numerical results presented in Fig. 19�a�, where the horizon-
tal vertical velocity profiles within the inner viscous bound-
ary layer at the steady state are presented, and v and x are
scaled by vm,s and vi,s, respectively, show that the scales vm,s
and vi,s collapse all sets of data onto a single curve, indicat-
ing that the vertical velocity similarity is well preserved
within the inner viscous boundary layer at the steady state,
that is, the horizontal vertical velocity profile within the in-
ner viscous boundary layer at the steady state can be ex-
pressed as follows

FIG. 17. DNS results of horizontal temperature profiles within
the thermal boundary layer at steady state for selected values of Bo,
Pr, and y: �a� � plotted against x; �b� � /�w,s plotted against x /T,s.
——, Bo=105, Pr=0.1 and y=0.5; ¯ ¯, Bo=106, Pr=0.1 and y
=0.5; ——, Bo=107, Pr=0.1 and y=0.5; –·–, Bo=108, Pr=0.1 and
y=0.5; –··–, Bo=109, Pr=0.1 and y=0.5; ––·––, Bo=106, Pr=0.01
and y=0.5; —— �bold�, Bo=5�106, Pr=0.05 and y=0.5; ¯ ¯

�bold�, Bo=5�107, Pr=0.5 and y=0.5; —— �bold�, Bo=107, Pr
=0.1 and y=0.3; –·– �bold�, Bo=107, Pr=0.1 and y=0.7; –··–
�bold�, Bo=107, Pr=0.1 and y=0.9.

FIG. 18. DNS results of horizontal temperature profiles within
the thermal boundary layer at the start-up stage for selected values
of Bo, Pr, y and � : �a� � plotted against x; �b� � /�w plotted against
x /T. ——, Bo=105, Pr=0.1 and y=0.5 at �=1.5; ¯ ¯, Bo=106,
Pr=0.1 and y=0.5 at �=1.5; ——, Bo=107, Pr=0.1 and y=0.5 at
�=1.0; –·–, Bo=108, Pr=0.1 and y=0.5 at �=0.5; –··–, Bo=109,
Pr=0.1 and y=0.5 at �=0.5; ––·––, Bo=106, Pr=0.01 and y=0.5 at
�=1.0; —— �bold�, Bo=5�106, Pr=0.05 and y=0.5 at �=1.0; ¯
¯ �bold�, Bo=5�107, Pr=0.5 and y=0.5 at �=1.5; —— �bold�,
Bo=107, Pr=0.1 and y=0.3 at �=0.5; –·– �bold�, Bo=107, Pr=0.1
and y=0.7 at �=1.0; –··– �bold�, Bo=107, Pr=0.1 and y=0.9 at �
=1.5.

W. LIN AND S. W. ARMFIELD PHYSICAL REVIEW E 72, 066309 �2005�

066309-14



v
vm,s

= f� x

vi,s
� , �61�

where f�x /vi,s� represents some function of x /vi,s. Figure
19�b�, where the horizontal vertical velocity profiles within
the outer viscous boundary layer at the steady state are pre-
sented, and v and �x−vi,s� are scaled by vm,s and T,s respec-
tively, show that the scales vm,s and T,s satisfactorily col-
lapse all sets of data onto a single curve, indicating that the
vertical velocity similarity is also well preserved within the
outer viscous boundary layer at the steady state, that is, the
horizontal vertical velocity profile within the outer viscous
boundary layer at the steady state can be expressed as
follows

v
vm,s

= f� x − vi,s

T,s
� , �62�

where f ��x−vi,s� /T,s� represents some function of
�x−vi,s� /T,s.

Figure 20 contains the numerically simulated horizontal
vertical velocity profiles within the viscous boundary layer at

the start-up stage for the selected values of Bo, Pr, y, and �.
The numerical results presented in Fig. 20�a�, where the hori-
zontal vertical velocity profiles within the inner viscous
boundary layer at the start-up stage are presented, and v and
x are scaled by vm and vi, respectively, show that the scales
vm and vi collapse all sets of data onto a single curve, indi-
cating that the vertical velocity similarity is well preserved
within the inner viscous boundary layer at the steady state,
that is, the horizontal vertical velocity profile within the in-
ner viscous boundary layer at the start-up stage can be ex-
pressed as follows

v
vm

= f� x

vi
� , �63�

where f�x /vi� represents some function of x /vi. Figure
20�b�, where the horizontal vertical velocity profiles within
the outer viscous boundary layer at the start-up stage are
presented, and v and �x−vi� are scaled by vm and T respec-
tively, show that the scales vm and T satisfactorily collapse
all sets of data onto a single curve, indicating that the vertical

FIG. 19. DNS results of horizontal profiles of the vertical veloc-
ity within the velocity boundary layer at steady state for selected
values of Bo, Pr and y: �a� v /vm,s plotted against x /vi,s within the
inner velocity boundary layer; �b� v /vm,s plotted against �x
−vi,s� /T,s within the outer velocity boundary layer. ——, Bo
=105, Pr=0.1 and y=0.5; ¯ ¯, Bo=106, Pr=0.1 and y=0.5; ——,
Bo=107, Pr=0.1 and y=0.5; –·–, Bo=108, Pr=0.1 and y=0.5; –··–,
Bo=109, Pr=0.1 and y=0.5; ––·––, Bo=106, Pr=0.01 and y=0.5;
—— �bold�, Bo=5�106, Pr=0.05 and y=0.5; ¯ ¯ �bold�, Bo
=5�107, Pr=0.5 and y=0.5; —— �bold�, Bo=107, Pr=0.1 and y
=0.3; –·– �bold�, Bo=107, Pr=0.1 and y=0.7; –··– �bold�, Bo=107,
Pr=0.1 and y=0.9.

FIG. 20. DNS results of horizontal profiles of the vertical veloc-
ity within the velocity boundary layer at the start-up stage for se-
lected values of Bo, Pr, y and �: �a� v /vm plotted against x /vi

within the inner velocity boundary layer; �b� v /vm plotted against
�x−vi� /T within the outer velocity boundary layer. ——, Bo
=105, Pr=0.1 and y=0.5 at �=1.5; ¯ ¯, Bo=106, Pr=0.1 and y
=0.5 at �=1.5; ——, Bo=107, Pr=0.1 and y=0.5 at �=1.0; –·–,
Bo=108, Pr=0.1 and y=0.5 at �=0.5; –··–, Bo=109, Pr=0.1 and
y=0.5 at �=0.5; ––·––, Bo=106, Pr=0.01 and y=0.5 at �=1.0;
—— �bold�, Bo=5�106, Pr=0.05 and y=0.5 at �=1.0; ¯ ¯

�bold�, Bo=5�107, Pr=0.5 and y=0.5 at �=1.5; —— �bold�, Bo
=107, Pr=0.1 and y=0.3 at �=0.5; –·– �bold�, Bo=107, Pr=0.1 and
y=0.7 at �=1.0; –··– �bold�, Bo=107, Pr=0.1 and y=0.9 at �=1.5.
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velocity similarity is also well preserved within the outer
viscous boundary layer at the start-up stage, that is, the hori-
zontal vertical velocity profile within the outer viscous
boundary layer at the start-up stage can be expressed as fol-
lows

v
vm

= f� x − vi

T
� , �64�

where f ��x−vi� /T� represents some function of �x
−vi� /T.

V. CONCLUSIONS

A set of scalings have been derived to describe the basic
features for the natural covection boundary layer flow adja-
cent to an evenly heated semi-infinite vertical plate with
isoflux boundary condition. The scalings have been devel-
oped for fluids with Prandtl number less than 1.0 with the
intention, in paticular, of determining the Prandtl number
effect for such flows. The scalings have been validated and
scaling constants obtained by comparison with numerical so-
lutions obtained using an unsteady Navier-Stokes solver. The
numerical solutions provide a full description of the flow
behavior provided sufficiently fine grid and time-step are us-
ing to resolve all features of the flow.

Based on the scaling analysis it was hypothesized that the
velocity boundary layer consisted of an inner and an outer
region that would require separate scalings. In the inner re-
gion the behavior of the velocity is determined by a viscous

bouyancy balance in the vertical momentum equation. In the
outer region the velocity boundary layer will be governed by
the behavior of the thermal boundary layer, as has been veri-
fied. The thermal boundary layer has been shown to obey a
single similarity law, while two similarity regions exist for
the velocity boundary layer, corresponding to the inner and
outer regions developed in the scaling analysis.

It has also been shown that applicability of the scalings is
limited by both distance from the plate origin and Bouss-
inesq number, showing that close to the origin and/or at low
Boussinesq numbers the flows are no longer self-similar, as
expected. This result is also seen in the comparison between
the DNS results and the solution of Sparrow and Greg �8�,
which is a similarity solution. From these results it can be
seen that for agreement to within 1% it is necessary for the
local Boussinesq number, that is the Boussinesq number
based on plate location y, to be greater than approximately
106Pr. This behaviour is also seen in the camparison of the
scaling relations and DNS results for varying y and Bo.
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